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Abstract
The Neolithic transition introduced major diet and lifestyle changes to human popula-
tions across continents. Beyond well-documented bioarcheological and genetic ef-
fects, whether these changes also had molecular-level epigenetic repercussions in 
past human populations has been an open question. In fact, methylation signatures 
can be inferred from UDG-treated ancient DNA through postmortem damage pat-
terns, but with low signal-to-noise ratios; it is thus unclear whether published pale-
ogenomes would provide the necessary resolution to discover systematic effects of 
lifestyle and diet shifts. To address this we compiled UDG-treated shotgun genomes 
of 13 pre-Neolithic hunter-gatherers (HGs) and 21 Neolithic farmers (NFs) individu-
als from West and North Eurasia, published by six different laboratories and with 
coverage c.1×–58× (median = 9×). We used epiPALEOMIX and a Monte Carlo nor-
malization scheme to estimate methylation levels per genome. Our paleomethylome 
dataset showed expected genome-wide methylation patterns such as CpG island hy-
pomethylation. However, analyzing the data using various approaches did not yield 
any systematic signals for subsistence type, genetic sex, or tissue effects. Comparing 
the HG-NF methylation differences in our dataset with methylation differences be-
tween hunter-gatherers versus farmers in modern-day Central Africa also did not 
yield consistent results. Meanwhile, paleomethylome profiles did cluster strongly by 
their laboratories of origin. Using larger data volumes, minimizing technical noise and/
or using alternative protocols may be necessary for capturing subtle environment-
related biological signals from paleomethylomes.
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1  |  INTRODUC TION

The last 12,000 years saw diverse human populations shift from 
mobile hunter-gathering to Neolithic lifeways involving sedentism 
and food production. These Neolithic transitions not only brought 
about changes in diet but also major shifts in daily activities, an 
increase in population density, as well as institutionalized social 
inequalities (Bar-Yosef & Belfer-Cohen,  1992; Richards,  2002). 
Beyond their social impact, how these changes shaped human 
health, physiology, genetics, and epigenetics has long been de-
bated. Bioarcheological evidence points to negative outcomes re-
lated to dietary constraints and high population density, such as 
increasing prevalence of growth disruption, anemia, or dental car-
ies in Neolithic populations compared to foragers (Larsen, 2006; 
Latham,  2013). Meanwhile, population genomic studies have re-
ported multiple loci that evolved under positive selection pres-
sures related to agriculture and pastoralism. These include the 
FADS genes involved in polyunsaturated fatty acid metabolism 
(Buckley et al., 2017) and the LCT gene responsible for lactase per-
sistence (Tishkoff et al., 2007). Even though these selection pres-
sures appear to have gained strength multiple millennia later than 
the original transitions to food production (Burger et  al.,  2020; 
Mathieson & Mathieson, 2018), their documentation is consistent 
with the notion that food production had significant long-term im-
pacts on human physiology.

It might be likewise expected that Neolithic transitions shifted 
human epigenetic profiles. Indeed, changes in overall methylation 
levels have been found in leukocytes related to vegetable-rich ver-
sus fat- and meat-rich diets in a human sample from the United 
States (Zhang et  al.,  2011). Even more relevant are the results 
by Fagny et al.  (2015), who compared blood methylation profiles 
between modern-day rainforest hunter-gatherers (MHGs) and 
modern-day farmers (MFs) living in central Africa. These authors 
reported thousands of loci showing differential methylation pat-
terns correlated with both historical and recent shifts in lifestyle. 
They further identified convergent epigenetic changes in two 
pairs of MHG and MF populations and associated these changes 
with immunity and developmental pathways. These results have 
raised the question of whether past Neolithic human populations 
may also have experienced similar lifestyle- and diet-related epi-
genetic shifts.

Unfortunately, most epigenetic information related to physi-
ology is lost in ancient specimens as soft tissue and RNA are not 
preserved (see Smith et al., 2019 for an exception). However, it has 
been shown that cytosine methylation sites can survive in ancient 
DNA. Several studies have used standard protocols for methylation 
profiling, such as bisulfite sequencing and immunoprecipitation, 
on ancient DNA (Llamas et al., 2012; Sawyer et al., 2023; Seguin-
Orlando et  al.,  2015; Smith et  al., 2015). Meanwhile, methylation 
information can be indirectly inferred from sequencing data from 
ancient DNA molecules treated with the UDG (uracil-DNA glycosy-
lase) enzyme. This is based on the knowledge that after death, aDNA 
molecules undergo widespread cytosine deamination at their broken 

ends, resulting in C→U (uracil) transitions if the cytosine is unmeth-
ylated, and in C→T (thymine) transitions if the cytosine is methylated 
(Briggs et al., 2007). Treatment of aDNA with UDG eliminates uracil 
nucleotides from DNA, and when such UDG-treated aDNA is shot-
gun sequenced, the level of observed C→T transitions at CpG sites 
allows inferring the relative methylation level at those loci (Pedersen 
et al., 2014).

Over the last decade, multiple studies have reported success-
ful retrieval of methylation patterns in past organisms using this 
approach (reviewed by Orlando et al., 2015). Pedersen et al. (2014) 
studied 20× coverage UDG-treated genomic data produced from a 
4000-year-old hair sample from Greenland. These authors reported 
significant correlations between genome-wide methylation levels 
inferred from this data with methylation measured in present-day 
human tissues, with the highest correlations found with hair. This 
study also found expected signals of hypomethylation in CpG islands 
in the paleomethylome data and further inferred the age of the an-
cient individual using a methylation clock. The same year, studying 
the 52×-coverage Neanderthal and 30×-coverage Denisovan ge-
nomes derived from bone material, Gokhman et  al.  (2014) found 
overall low CpG methylation rates (<1.5%) as inferred from post-
mortem deamination; however, binning those methylation scores 
yielded high correlations with global methylation patterns measured 
in modern-day human bone samples. These authors further used 
this data to predict a number of loci, developmental genes, that 
might be differentially methylated between archaic hominins and 
modern humans. Hanghøj et al. (2016) published the epiPALEOMIX 
MethylMap algorithm for estimating methylation scores in UDG-
treated ancient DNA libraries with sufficient (e.g., >2×) coverage. 
Applying their algorithm to published ancient human genomes, 
these authors showed tissue-based clustering among at least some 
paleomethylomes they analyzed. Successful retrieval of paleometh-
ylation signatures has also been reported for other species, including 
barley, maize, and horses (Liu et al., 2023; Smith et al., 2014; Wagner 
et al., 2020).

Despite the promising results described above, whether lifestyle-
related paleomethylation signatures may be retrievable from ancient 
bone and tooth material remains unknown. It is also unclear whether 
paleomethylome profiles inferred from data produced in different 
laboratories and variable coverages could be readily comparable. 
This is a particularly challenging task because paleomethylome pro-
files are inferred indirectly, depending on the presence of random 
postmortem damage at read ends. The signal-to-noise ratio per locus 
is hence much lower compared to information collected using bisul-
fite sequencing on present-day tissue samples. Therefore the techni-
cal noise caused by different lab protocols could readily overshadow 
biological signals.

Here we address these questions by investigating methylation 
patterns across 34 published paleogenomes from hunter-gatherer 
(HG) and Neolithic farmer (NF) contexts from West and North 
Eurasia, produced by different laboratories and with a range of 
depth-of-coverages. We use the data to test the hypothesis that sys-
tematic methylation differences may be detected between ancient 
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HG and NF groups, driven by environmental changes. We further 
ask whether convergent HG-NF epigenetic shifts can be detected 
between ancient and present-day populations.

2  |  METHODS

2.1  |  Genome data selection and preprocessing

We selected UDG/USER-treated shotgun-sequenced genomes from 
published genomic data including 13 HGs and 21 NFs from West and 
North Eurasia. Sample-related information can be found in Table S1. 
We note that the Siberian Bronze Age individuals were included in 
the HG category since these groups had an HG-like lifestyle with 
a diet composed mainly of marine and freshwater products (Kılınç 
et al., 2021). We chose to limit our sample to West and North Eurasia 
to limit the effect of differences in population genetic background 
but also tried to keep our sample large enough to increase power. 
We used the R (Wickham, 2016) function “ggmap” for plotting the 
chosen individuals' geographical distributions (Figure 1a).

All data was downloaded as BAM or FASTQ files from the 
European Nucleotide Archive (ENA; https://​www.​ebi.​ac.​uk/​ena), 
with reference numbers listed in Table S1. All FASTQ and BAM files 
were remapped on Homo sapiens genome assembly hs37d5 using 
“bwa aln” with parameters “-l 16500 -n 0.01 -o 2” (Li & Durbin, 2009). 
We filtered out reads of size less than 35 bps, with a mapping quality 
(MAPQ) of less than 30, and with more than 10% mismatches to the 
reference genome. We verified the effectiveness of the UDG/USER 
treatment by studying the PMD profiles created using “pmdtools” 
(Skoglund et al., 2014) on each genome (Figures S1 and S2).

We called all CG dinucleotide autosomal positions (n = 26,752,702) 
from the human (hg19) reference genome using the R Bioconductor 
package “BSgenome.Hsapiens.UCSC.hg19” (Pagès,  2019) and 
stored these in a BED file. We then filtered these by removing any 
positions overlapping with SNP positions from dbSNP 142 (Sherry 
et al., 2001). Our aim here was to avoid confounding between meth-
ylation signals and real variants at CpG positions. There remained 
13,270,411 autosomal CpG positions in the reference genome.

We downloaded CpG island (CGI) positions for hg19 from the 
UCSC Genome Browser (Karolchik et al., 2004). We termed 2 kb se-
quences flanking CpG islands “shores” (upstream regions “shores5” 
and downstream regions “shores3”), 2 kb sequences flanking the 
shores “shelves” (upstream regions “shelves5” and downstream re-
gions “shelves3”), and distal sites outside the CpG island regions as 
“open sea,” following (Hanghøj et al., 2016).

2.2  |  Methylation score calculation

We chose to use the software epiPALEOMIX (Hanghøj et al., 2016) 
over DamMet (Hanghøj et  al.,  2019); the latter is an alterna-
tive methylome mapping software developed by the same group 
but is described as requiring ≥20× coverage to generate reliable 

results. Since our dataset median was much lower we decided to 
use epiPALEOMIX. epiPALEOMIX requires UDG/USER-treated and 
≥2×-coverage genomes (we still included three genomes <2× to in-
crease our sample size). The BAM file, the hg19 reference fasta file, 
the reference BED file for CpG positions, and the library type of the 
sample (single-stranded/double-stranded) were given as input. We 
thus constructed our sample set and epiPALEOMIX input files ac-
cording to these criteria.

We filtered the epiPALEOMIX output files for each CpG posi-
tion having ≥4 reads to increase the precision of the methylation 
score (MS) values. This filtering resulted in an average of 3,006,714 
CpG positions per genome (10,642–11,721,229). We also ran parallel 
analyses using ≥10 reads per position (Text S1).

We further generated a file that included the information related 
to the chromosome number, CpG position, and the MS values of 
each ancient individual as a column by joining all the files by CpG 
positions. Missing values were presented by “NA.”

We calculated average MS values per CpG position per individual 
from the epiPALEOMIX outputs. Let n1i denote the number of deam-
inated reads and n0i denote the number of non-deaminated reads in 
genome i. We then calculated: M¯Si = n1i/(n0i + n1i). We also plotted 
the MS values per individual (Figure 1b) using “ggplot2” function in R 
Wickham (2016). We used the R (Wickham, 2016) functions “ggmap” 
and “ggplot” for plotting geographical distributions and the CpG dis-
tributions (Figure 1c).

We performed gene annotation using the UCSC Genome 
Browser table for the hg19 assembly containing only exons (Karolchik 
et al., 2004). After that, we calculated MS at the promoter sites (4 kb 
long) by using 2 kb upstream of the first exon on the positive strand.

We also ran epiPALEOMIX on the X chromosomes (chrX) of the 
same 34 individuals. These chrX datasets were prepared employing 
the same steps used with the autosomal datasets.

2.3  |  Monte Carlo normalization

Given the large differences in mean MS values among the genomes 
(Figure  1), we normalized our ANOVA dataset, which includes all 
the reads corresponding to CpG positions per individual, by random 
subsampling the reads so that every individual in the dataset has 
mean MS value M¯S = 0.02. Note that here we again only use CpG 
positions with ≥4 reads in each genome. We chose 0.02 as a target 
as this was on the lower end of the M¯S distribution among the ge-
nomes used.

Let n1i denote the number of originally deaminated reads in ge-
nome i, and let n0i denote the number of originally nondeaminated 
reads in the same genome. We proceeded as follows: (a) If genome i 
had original mean MS < 0.02: we subsampled from n0i a random sub-
set n0is as n0is = 49n1i, so that n1i/(n0is + n1i) = 0.02. (b) If genome i had 
original mean MS > 0.02: we subsampled from n1i a random subset 
n1is as n1is = n0i/49, so that n1is/(n0i + n1is) = 0.02.

We ran random subsampling using the function “sample” offered 
by R.
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We repeated the random subsampling 20 times independently 
to produce 20 normalized datasets. The chrX dataset was also nor-
malized in the same manner, separately. We note that normalization 
is performed using all reads (on autosomes, or chrX), not just ones 
that overlap genes. We also normalized the chrX dataset over the 
autosomal MSs and plotted violin plots for all CpGs and also for the 
Neolithic individuals reported by Marchi et al., 2022 using the func-
tion “vioplot” in base R (Figure 4).

2.4  |  Gene methylation datasets

We used these 20 normalized datasets to compile methylation levels 
per gene, in two ways:

a.	 Full data for linear mixed models: Here, we used all normalized 
MS values for all CpGs overlapping a gene. Each individual may 
be represented by multiple CpG positions per gene (median 261). 

F I G U R E  1 The demographic 
characteristics of the 34 ancient genomes 
used in this study and their genome-wide 
methylation scores. (a) The excavation 
locations of ancient individuals are 
included in this study. Color coding 
indicates subsistence type. (b) Left panel: 
Violin plots of the methylation score 
(MS) data related to ancient individuals 
included in this study. The brown and 
blue points indicate the mean and the 
median, respectively. The x-axis shows 
the log2-transformed MS values. The 
y-axis represents the ancient individuals. 
Right panel: Zoomed-in version of the left 
panel. (c) The distribution of mean MS per 
individual on CpG islands and genomic 
sites representing shelves, shores, and 
open seas.
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We had 20 parallel subsampled datasets of gene MS values. Note 
that the numbers of genes and CpG positions in each of these 
20 datasets were slightly different because of random sampling 
of reads (e.g., genes with one CpG position might not be repre-
sented in some datasets).

b.	 Gene-averaged data: This single dataset was produced by calcu-
lating, per gene, the means of all CpG MS values and averaging 
these across the 20 subsampled datasets. We thus summarized 
the dataset into a matrix of 9956 genes × 34 genomes.

2.5  |  Statistical tests

We used tests from the R “stats” package. All the tests were carried 
out two-sided unless otherwise indicated. We adjusted p-values for 
multiple testing using the Benjamini–Hochberg procedure using the 
R “p.adjust” function.

2.6  |  Linear mixed effects models

We applied linear mixed effects models to the full data (a) described 
above, where multiple CpG positions per gene represent an individual. 
Since we had fixed (subsistence type, tissue, and genetic sex) and ran-
dom factors (individual or laboratory-of-origin) in the settings, we de-
cided to conduct linear mixed-effects models employing the R “stats” 
package “aov” function (R Core Team, 2020). We tested two models 
that differed in their random factors for each gene:

Model 1: deamination∼subsistence type + tissue type + genetic 
sex + Error(individual)

Model 2: deamination∼subsistence type + tissue type + genetic 
sex + Error(laboratory-of-origin)

Here, the response variable “deamination” is a binary [0,1] 
variable that describes how many reads falling into each gene are 
deaminated or not. Note that this approach suffers from pseudorep-
lication because the observations (reads) per locus are dependent 
when multiple reads map to the same locus. To overcome this, we 
also used the gene-averaged data (b) described above. This time we 
applied ANOVA and Kruskal–Wallis tests on MS values per gene but 
without an individual component, using the R “stats” package “aov” 
and “kruskal.test” functions, respectively (R Core Team, 2020). Here, 
we have a single observation per gene, and thus the results do not 
suffer from pseudoreplication.

2.7  |  Multidimensional scaling analysis

We carried out multidimensional scaling (MDS) analysis on our 
gene-averaged dataset which included mean MSs per gene aver-
aged 20 subsampled datasets. We used the R's “cmdscale” func-
tion. We ran MDS both including all 34 individuals, or using 32 
individuals after excluding extreme outliers Motala12 and K14 
(Figure 3, Figure S8).

2.8  |  Gene Ontology enrichment

Gene Ontology (GO) (Consortium,  2008) enrichment analysis 
(Subramanian et al., 2005) was performed by comparing gene sets 
with evidence for significant effects (for subsistence type, tissue 
type, or genetic sex) that had BH-adjusted p-values < 0.05 from 
the linear mixed-effects models. We used the R “topGO” (Alexa & 
Rahnenfuhrer, 2019) and “org.Hs.eg.db” packages (Carlson, 2019) to 
collect GO Biological Process information for the genes. The back-
ground gene sets included all 9657–9660 genes across the 20 nor-
malized datasets included in the analyses. We ran the Fisher's exact 
test within “topGO,” and used its “elim” algorithm for transversing 
the GO hierarchy (removing genes from significantly enriched lower 
nodes) (Alexa & Rahnenfuhrer,  2019). We also filtered the output 
to have ≥5 genes per GO term by using the “nodeSize” option while 
creating the GO data. The p-value threshold for the significance of 
the GO terms was chosen to be 0.01. We also visualized resulting 
GO terms using reviGO with default parameters (Supek et al., 2011). 
Results for two randomly chosen datasets (of 20 datasets) are shown 
in Figures S6 and S7.

2.9  |  Subsistence type-related methylation 
differences in ancient Eurasian versus modern 
African datasets

A recently published study uses blood samples taken from individu-
als to compare modern-day HG (MHG) and modern-day farmer (MF) 
blood methylation profiles in West and East African rainforests (Fagny 
et al., 2015). We used the results file of the study which contained the 
multiple-testing corrected p-values and the logarithm of methylation 
fold-change between MFs versus MHGs (logFC). In total, the dataset 
contained 365,401 CpG positions overlapping 19,672 genes. We used 
this information to estimate correlations between our results and the 
modern results reported by the original study.

We tested the co-directionality between the logFC values in 
this dataset and NF-HG differences we calculated in our methylome 
dataset. In other words, we compared farmer versus HG differences 
in MS scores δMSF−HG across overlapping genes between pairs of 
datasets. Given the variability of MS profiles among genomes from 
different laboratories, we performed this comparison using sub-
datasets from three different laboratories that contained both NF 
and HG individuals (Boston, Stanford, Mainz; see Table S1), and also 
using 12 HG and 20 NF genomes excluding Motala12 and K14 in-
dividuals. We calculated the Spearman's rank correlation between 
δMSF−HG values from two datasets across common genes using the R 
“stats” package function “cor.test” (R Core Team, 2020). We plotted 
the lowest regression lines for the main laboratory of origins using 
the R “graphics” package “pairs” function with the “panel.cor” and 
“panel.smooth” parameters (Figure 4). The correlations and p-values 
were calculated using Spearman's rank correlation method. For plot-
ting we used the R “graphics” package and “ggplot2” package func-
tions (Wickham, 2016).
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3  |  RESULTS

Our dataset comprises published paleogenomes of 13 HGs (45–4 kya) 
and of 21 NFs (8.5–5 kya) from Eurasia as of 2022, all shotgun-
sequenced and UDG-treated, and originating from six different 
laboratories and eight different publications (Antonio et  al.,  2019; 
Fu et  al.,  2014; Günther et  al.,  2018; Kılınç et  al.,  2021; Lazaridis 
et al., 2014; Marchi et al., 2022; Sánchez-Quinto et al., 2019; Seguin-
Orlando et al., 2014) (Table S1; Figures S1 and S2). This includes all 
genomes from Eurasia as of 2022 that were UDG-treated, shotgun-
sequenced, and with sufficient (minimum c.1×) coverage. We limited 
our sample to West and North Eurasia (Figure  1a) to limit genetic 
background variation (Section 2). Of the 34 genomes, 23 were derived 
from bone and 11 from tooth; 12 were female and 22 male; four were 
produced using single-stranded and the rest double-stranded library 
protocols. The genome coverages ranged from c.1× to 58× (me-
dian = 9×). Genomes from different publications had different cover-
age levels (ANOVA p = 3E-14), but the coverages of subsistence type 
groups (HG vs. NF) were not different in this sample (ANOVA p = 0.69).

To measure methylation rates, we used c.13 million autosomal 
CpG positions in the reference genome excluding variable positions 
(Section 2). In this set, an average of c.9 million (3–12 million) CpG's were 
covered by at least one read per genome. Filtering for a minimum depth of 
4 left us with an average of c.3 million (10,000–12 million) CpG positions 
per genome. Running epiPALEOMIX (Hanghøj et al., 2016) on this data, 
we computed the number of likely methylated (deaminated) and possibly 
non-methylated (non-deaminated) reads, and the resulting methylation 
score (MS) for each CpG position per genome. The distribution of the 
MS values per CpG site across all 34 genomes revealed average methyl-
ation rates of <7% (Figure 1b). This is much lower than the average CpG 
methylation rates in human tissues (60%–80%) (Anastasiadi et al., 2018; 
Smith & Meissner,  2013), but in line with published estimates from 
other paleogenomes (Gokhman et al., 2014; Hanghøj et al., 2016), and 
is caused by the indirect nature of methylation level measurements in 
ancient DNA. We also observed multiple-fold differences in mean MS 
among the 34 paleogenomes (c.1% vs. c.6%), which likely reflects techni-
cal effects rather than biological signals (Tables S1 and S2).

Despite these possibly technical effects, we found that CpG is-
lands (CGIs), which are normally hypomethylated regions of the ge-
nome, show significantly lower MS scores (Wilcoxon signed rank test 
p < 1e-10; Table S3) across these 34 paleogenomes, compared to CGI 
shores (2 kb from CGI) and CGI shelves (4 kb from CGI) and more dis-
tant “open sea” areas (Figure  1c; Figures S3 and S4). This indicates 
that the genome-wide MS values measured here have some degree of 
biological relevance.

3.1  |  Tests for subsistence type, tissue, and sex 
effects: few or no genes with evidence for systematic 
methylation differences

We next tested for differentially methylated genes (DMGs) related 
to subsistence type, tissue of origin (tooth or bone), and genetic 

sex. Before running the tests, to avoid possible biological effects 
being confounded by inter-genome variability in average MS values 
(Figure  1b), we normalized the dataset by randomly subsampling 
reads for every individual genome so that each genome gained a 
genome-wide mean MS of 0.02 (Section 2). We performed this sub-
sampling 20 times, creating 20 normalized replicate datasets. Using 
each of these replicates separately, and for each gene, we ran linear 
mixed effects models: all MS values across a gene as the response, 
subsistence type, tissue, and sex as fixed effects, and “individual” as 
the random effect.

We thus tested c.9600 (9657–9660) genes across the 20 nor-
malized datasets, with each gene represented by a median of 261 
CpG positions (1–18,097). Among these genes, a total of 55–71 
(0.5%–0.7% of tested genes) had ANOVA p < 0.05 for only subsis-
tence type after Benjamini–Hochberg (BH) correction for multiple 
testing (the range representing the result across the 20 replicate 
datasets). The number of BH-corrected significant genes for tissue 
type and genetic sex were 19–39 (0.2%–0.4%) and 0–12 (0%–0.1%), 
respectively (Figure S5). Figure  2a shows the top genes identified 
for each factor. We note that this approach may be overestimating 
effects due to some degree of pseudoreplication, which we address 
below (Section 2).

We performed functional enrichment analysis using gene on-
tology (GO) Biological Process categories to identify possible func-
tional roles of DMGs (those passing BH-corrected ANOVA p < 0.05) 
relative to the background set of 9657–9660 genes across the 20 
subsampled datasets. The most enriched GO terms included devel-
opment-  and regulation-related mechanisms (results for two ran-
domly chosen datasets are shown in Figures S6 and S7). However, 
the results were not significant after multiple testing correction (BH-
corrected Fisher's exact test p > 0.05).

We next repeated the previous analysis but this time using 
the “laboratory-of-origin” as a random effect (instead of “individ-
ual”). The numbers of genes with sufficient information to execute 
ANOVA to compute p-values for all categories were 8867–8891 
across the 20 subsampled datasets (Section 2). This time, either no 
gene or a maximum of two genes were significant at BH-corrected 
p < 0.05 for any of the three fixed factors. The top genes are shown 
in Figure 2b; similar to those in Figure 2a no strong effects are visible 
even among these genes.

Instead of using the full data, summarizing MS values per gene 
might reduce noise and clarify the signal. For each of the 9955 
genes and all 34 individuals, we calculated the average MS across 
all CpG positions covered with a minimum of 4 reads per gene and 
averaged these across all 20 subsampled datasets (Section 2). Per 
individual genome, we observed a median of 9685 genes (mean 
7859) with a minimum 1 CpG position covered. Using this data-
set, we first calculated Euclidean distances in genome-wide MS 
scores between all pairs of individuals and summarized these using 
multi-dimensional scaling (MDS). This revealed that the K14 and 
Motala12 genomes, which also had the lowest coverage of CpG 
sites in our set, also behaved as outliers in their paleomethylome 
profiles (Figure S6).
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Removing these two genomes, an MDS plot of distances among 
the remaining 32 genomes revealed salient clustering by laboratory-
of-origin (Figure 3).

We further limited the dataset to 9273 genes observed 
in a minimum of 20 individuals, and ran Kruskal–Wallis with 

laboratory-of-origin as an explanatory factor, excluding Motala12 
and K14 individuals: we found an effect across 14% of genes tested 
(BH-corrected p < 0.05). In contrast, running the same test using 
subsistence type, tissue, or sex as explanatory factors yielded no sig-
nificant genes at this cutoff. Performing this analysis by limiting the 

F I G U R E  2 Representative genes with the most significant differential methylation signals in linear mixed model analyses, related to 
subsistence type, tissue, and sex. The x-axis represents the factors while the y-axis represents the mean MS values per gene per individual. 
(a) Genes chosen using models with “individual” as random factor. Left panel: ICAM5 (subsistence type p < 0.01). Middle panel: ATPB1 (tissue 
type p < 0.01). Right panel: CEP135 (genetic sex p = 0.02). (b) Genes chosen using models with “laboratory-of-origin” as random factor. Left 
panel: TOX2 (subsistence type p = 0.006). Middle panel: PCDHA2 (tissue type p = 0.03). Right panel: RCOR1 (genetic sex p = 0.04).

(a)

(b)

F I G U R E  3 Multi-dimensional scaling (MDS) plots of 32 paleomethylome profiles. The data were created by Monte Carlo normalizing MS 
values 20 times followed by averaging per gene. (a) MDS plot labeled by subsistence type of individuals. Blue: HG, Red: NF. (b) MDS plot 
labeled by the laboratory-of-origin (indicated by the city). The Motala12 and K14 genomes were not included in the analyses due to their 
outlier profiles compared to the rest likely representing technical effects (Figure S8), which leaves us with five laboratories.

(a) (b)
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dataset to a minimum of 25 or 30 individuals, using only genomes 
with ≥10× coverage, or using ANOVA produced qualitatively the 
same outcomes.

In addition, we repeated the analysis using a cutoff of ≥10 
reads per CpG position and 20 genomes with sufficient coverage. 
We again found similar results, with 44, 37, and 3 genes with BH-
corrected p < 0.05 for subsistence type, tissue type, and genetic sex, 
respectively, and no significant functional enrichment (Text S1). Our 
results overall suggest that the biological signals are limited, possibly 
obscured by the dominant laboratory-of-origin effect in the data.

3.2  |  No significant correlation with 
subsistence-type effects in modern-day Africa

Although our analyses above did not yield any clear signs of 
subsistence-related differential methylation, weak but authen-
tic signals might still be detected by comparing our MS data with 
subsistence-related DMGs identified in modern-day populations 
(Fagny et al., 2015), assuming Neolithic shifts would create conver-
gent methylation signatures. We decided to run this comparison (a) 
on our full dataset of HG-NF differences, and (b) separately on three 
paleomethylome datasets from different laboratories where both 

subsistence types were represented (Table  1); we considered that 
the latter approach might help remove confounding between real 
signals and technical effects.

To this end, we utilized methylation differences documented 
between modern-day HGs and agriculturalists in Central Africa, 
measured in whole blood samples using bisulfite treatment and the 
Illumina 450K array (Fagny et al., 2015). The authors of this study 
reported c.9000 and c.6000 genes that included CpG sites differ-
entially methylated between independent groups of traditional HGs 
and agriculturalists living in Eastern Central Africa (EC Africa) or in 
Western Central Africa (WC Africa), respectively.

We found 7890 genes overlapping between our paleomethylome 
dataset and the modern-day African dataset. Across these genes, 
we calculated the correlation between methylation differences be-
tween HG-NF groups in our dataset, and the log-transformed mean 
fold change [log(FC)] values between modern-day HGs and agricul-
turalists groups in the EC Africa and WC Africa datasets as calcu-
lated by Fagny et al.  (2015) (Section 2). We observed a significant 
positive correlation (Spearman's rank correlation coefficient r = 0.34, 
p < 0.01; Table  1) between methylation differences in modern-day 
HGs and agriculturalists measured in EC Africa and WC Africa, in line 
with the original publication (Fagny et al., 2015). However, no con-
sistent correlation could be observed between HG-NF differences 

p-Value, r ECAfrica WCAfrica Boston Stanford Mainz

ECAfrica – r = 0.35 r = −0.043 r = −0.035 r = −0.044

WCAfrica p < 0.01 – r = −0.028 r = −0.027 r = −0.043

Boston p < 0.05 p = 0.26 – r = 0.019 r = 0.034

Stanford p = 0.31 p = 0.99 p = 0.20 – r = −0.043

Mainz p = 0.084 p < 0.05 p = 0.17 p < 0.01 –

Note: The upper triangle panel reports Spearman rank correlation coefficient r, whereas the lower 
triangle shows p-values. “ECAfrica” and “WCAfrica” represent present-day HG-agriculturalist 
methylation differences (log fold-change) measured in humans from East Central Africa and West 
Central Africa, respectively. “Boston,” “Stanford,” and “Mainz” stand for MS differences between 
HG-NF groups measured using only paleogenomes produced in the respective city (Table S1).

TA B L E  1 Pairwise comparisons of 
HG-agriculturalist DNA methylation 
differences between ancient and present-
day human datasets.

F I G U R E  4 Violin plots of X chromosome methylation estimates in female and male ancient genomes. The y-axes show chrX MS values 
divided by the mean autosomal MS for the same individual. Left Panel: ChrX MS values of all 34 paleogenomes for 12 females (XX) and 22 
males (XY). The MS values for females and males were pooled after normalizing by dividing the chrX MS values by the mean autosomal MS 
value for the same individual. Right Panel: ChrX MS values from NF individuals from Marchi et al. (2022). These genomes were chosen to 
remove the possible influence of other factors (different laboratory and subsistence type effects) on chrX methylation estimates.

 17524571, 2024, 7, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/eva.13743 by O

rta D
ogu T

eknik U
niversitesi, W

iley O
nline L

ibrary on [05/08/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense
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within our paleomethylome dataset or between differences in the 
paleogenomes and HG-agriculturalist differences measured either 
in EC Africa or in WC Africa. Two nominally significant correlations 
were negative and all correlations were weak (Spearman's r < 0.05) 
across the 2507 genes shared across all datasets (Table 1).

3.3  |  Lack of sex-related X chromosome 
methylation signatures among the 34 paleogenomes

The X chromosome (chrX) is expected to be methylated at higher rates 
in females compared to males due to female X chromosome inactiva-
tion (Liu et al., 2010). Indeed, Liu et al. (2023) recently reported clear 
clustering of X chromosome MS values measured in ancient female 
and male horses. To investigate such signal among the 34 paleog-
enomes used in this study, we prepared a chrX paleomethylome data-
set, normalizing the chrX MS scores by the mean autosomal MS score 
for that individual. We then tested each chrX gene for sex differences 
using ANOVA, using either “laboratory-of-origin” or “individual” as ran-
dom factors. Unexpectedly, no chrX gene was significant for sex after 
the BH correction (p > 0.05). A plot of chrX MS distributions between 
female and male individuals across all 34 paleogenomes, or only using 
13 NF paleogenomes from Mainz, likewise revealed no obvious differ-
ence between sexes (Figure 4). This suggests that the overall biological 
signal in the dataset is indeed limited.

4 | DISCUSSION

Today, thousands of human paleogenomes are being produced 
every year and there is growing interest in using these to study bio-
logical processes beyond historical and social questions (Orlando 
et al., 2015). This includes the study of DNA methylation levels. Even 
though cytosine methylation appears to survive in aDNA (Gokhman 
et al., 2014; Pedersen et al., 2014; Seguin-Orlando et al., 2015), it has 
been yet unclear whether the highly variable nature of the published 
paleogenomic data could allow reproducible signals to be inferred 
from joint datasets from different laboratories.

Here we investigated biological signals related to tissue source, 
sex, and subsistence type in a heterogeneous paleomethylome data-
set comprising genomes from six different laboratories. We limited 
the calls to CpG sites with a minimum of 4 reads, normalized the data 
by subsampling to account for average coverage differences, and ran 
analyses using several different comparative approaches. Beyond 
hypomethylation of CGIs, we could not recover any biological signal 
that reached genome-wide statistical significance.

Whether universal subsistence-type effects related to hunter-
gatherer versus agriculturalist lifeways might be prevalent in bone 
methylomes is an open hypothesis. Hence, not finding a consistent 
signal in this dataset may not be surprising and attributable to a di-
versity of possible effects, including the lack of a real convergent 
signal, or small sample sizes. However, the lack of tissue (bone vs. 
tooth) or sex signatures, including on chrX, was unexpected.

Our negative results appear to contrast with the recent report 
by Liu et al. (2023) who identified systematic methylation signatures 
of sex, age, and castration in paleogenomes, or those by Hanghøj 
et al. (2016) who clustered genomes based on tissue type. However, 
the first study used >5× coverage genomes produced in the same 
laboratory, and the second study used data from two laboratories 
and only >14× genomes. Our results also contrast with another re-
cent study that reported significant methylation differences among 
ancient human populations using 1240K capture data and pooling 
across samples (Barouch et  al.,  2024); however, it remains possi-
ble that batch effects might also have contributed to the detected 
differences.

In our heterogeneous dataset, the most prominent clustering 
was by laboratory-of-origin. Such technical effects on methylation 
scores could be due to differences in mean depth-of-coverage, as 
well as variable coverage patterns across paleogenomes, which, in 
turn, could be driven by laboratory protocol differences in aDNA 
isolation, library preparation, or sequencing. We hypothesize that 
such technical variability overshadows any differential methylation 
signals that are subtle and measured indirectly. Hence, based on our 
results, strict control of technical effects and the wider production 
of relatively high coverage (e.g., >10×) UDG-treated shotgun ge-
nomes (Niiranen et al., 2022) would be highly favorable for future 
paleomethylome studies. Meanwhile, using alternative experimen-
tal strategies could also be an option for paleomethylomics. For 
instance, Sawyer et al. (2023) recently reported that bisulfite treat-
ment of aDNA coupled with a single-stranded library preparation 
protocol could produce similar or even more accurate CpG methyla-
tion estimates as that inferred indirectly from postmortem damage, 
using much lower amounts of sequencing data.

Such exploration is highly welcome, as high-resolution pa-
leomethylome information from bone and tooth tissue can have 
diverse applications. These range from estimating methylation age, 
physiological/metabolic stress levels, or pathogenic responses, 
and could be applied to evolutionary studies of humans (Zhur 
et al., 2021), domestic species (MacHugh et al., 2016), or wild pop-
ulations. This information, in turn, could help reconstruct past en-
vironments and also resolve long-standing questions on the role of 
epigenetic responses in adaptation to new environments.
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