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Abstract
The Neolithic transition introduced major diet and lifestyle changes to human popula-
tions across continents. Beyond well- documented bioarcheological and genetic ef-
fects, whether these changes also had molecular- level epigenetic repercussions in 
past human populations has been an open question. In fact, methylation signatures 
can	be	 inferred	 from	UDG-	treated	ancient	DNA	through	postmortem	damage	pat-
terns, but with low signal- to- noise ratios; it is thus unclear whether published pale-
ogenomes would provide the necessary resolution to discover systematic effects of 
lifestyle and diet shifts. To address this we compiled UDG- treated shotgun genomes 
of	13	pre-	Neolithic	hunter-	gatherers	(HGs)	and	21	Neolithic	farmers	(NFs)	individu-
als	 from	West	 and	North	 Eurasia,	 published	 by	 six	 different	 laboratories	 and	with	
coverage c.1×–58×	 (median = 9×).	We	used	 epiPALEOMIX	 and	 a	Monte	Carlo	 nor-
malization scheme to estimate methylation levels per genome. Our paleomethylome 
dataset	showed	expected	genome-	wide	methylation	patterns	such	as	CpG	island	hy-
pomethylation. However, analyzing the data using various approaches did not yield 
any	systematic	signals	for	subsistence	type,	genetic	sex,	or	tissue	effects.	Comparing	
the	HG-	NF	methylation	differences	in	our	dataset	with	methylation	differences	be-
tween	 hunter-	gatherers	 versus	 farmers	 in	modern-	day	 Central	 Africa	 also	 did	 not	
yield	consistent	results.	Meanwhile,	paleomethylome	profiles	did	cluster	strongly	by	
their laboratories of origin. Using larger data volumes, minimizing technical noise and/
or using alternative protocols may be necessary for capturing subtle environment- 
related biological signals from paleomethylomes.
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1  |  INTRODUC TION

The	 last	12,000 years	 saw	diverse	human	populations	 shift	 from	
mobile hunter- gathering to Neolithic lifeways involving sedentism 
and food production. These Neolithic transitions not only brought 
about changes in diet but also major shifts in daily activities, an 
increase in population density, as well as institutionalized social 
inequalities	 (Bar-	Yosef	 &	 Belfer-	Cohen,	 1992; Richards, 2002).	
Beyond their social impact, how these changes shaped human 
health, physiology, genetics, and epigenetics has long been de-
bated. Bioarcheological evidence points to negative outcomes re-
lated to dietary constraints and high population density, such as 
increasing prevalence of growth disruption, anemia, or dental car-
ies	 in	Neolithic	populations	compared	to	foragers	 (Larsen,	2006; 
Latham, 2013).	Meanwhile,	 population	genomic	 studies	have	 re-
ported multiple loci that evolved under positive selection pres-
sures related to agriculture and pastoralism. These include the 
FADS	 genes	 involved	 in	 polyunsaturated	 fatty	 acid	 metabolism	
(Buckley	et	al.,	2017)	and	the	LCT	gene	responsible	for	lactase	per-
sistence	(Tishkoff	et	al.,	2007).	Even	though	these	selection	pres-
sures appear to have gained strength multiple millennia later than 
the	 original	 transitions	 to	 food	 production	 (Burger	 et	 al.,	 2020; 
Mathieson	&	Mathieson,	2018),	their	documentation	is	consistent	
with the notion that food production had significant long- term im-
pacts on human physiology.

It	might	be	likewise	expected	that	Neolithic	transitions	shifted	
human epigenetic profiles. Indeed, changes in overall methylation 
levels have been found in leukocytes related to vegetable- rich ver-
sus fat-  and meat- rich diets in a human sample from the United 
States	 (Zhang	 et	 al.,	 2011).	 Even	 more	 relevant	 are	 the	 results	
by	Fagny	et	al.	 (2015),	who	compared	blood	methylation	profiles	
between	 modern-	day	 rainforest	 hunter-	gatherers	 (MHGs)	 and	
modern-	day	farmers	(MFs)	 living	in	central	Africa.	These	authors	
reported thousands of loci showing differential methylation pat-
terns correlated with both historical and recent shifts in lifestyle. 
They further identified convergent epigenetic changes in two 
pairs	of	MHG	and	MF	populations	and	associated	these	changes	
with immunity and developmental pathways. These results have 
raised the question of whether past Neolithic human populations 
may	also	have	experienced	similar	 lifestyle-		and	diet-	related	epi-
genetic shifts.

Unfortunately, most epigenetic information related to physi-
ology	 is	 lost	 in	 ancient	 specimens	 as	 soft	 tissue	 and	RNA	are	 not	
preserved	(see	Smith	et	al.,	2019	for	an	exception).	However,	it	has	
been shown that cytosine methylation sites can survive in ancient 
DNA.	Several	studies	have	used	standard	protocols	for	methylation	
profiling, such as bisulfite sequencing and immunoprecipitation, 
on	ancient	DNA	 (Llamas	et	al.,	2012;	 Sawyer	et	al.,	2023;	 Seguin-	
Orlando et al., 2015;	 Smith	 et	 al.,	2015).	Meanwhile,	methylation	
information can be indirectly inferred from sequencing data from 
ancient	DNA	molecules	treated	with	the	UDG	(uracil-	DNA	glycosy-
lase)	enzyme.	This	is	based	on	the	knowledge	that	after	death,	aDNA	
molecules undergo widespread cytosine deamination at their broken 

ends, resulting in C→U	(uracil)	transitions	if	the	cytosine	is	unmeth-
ylated, and in C→T	(thymine)	transitions	if	the	cytosine	is	methylated	
(Briggs	et	al.,	2007).	Treatment	of	aDNA	with	UDG	eliminates	uracil	
nucleotides	from	DNA,	and	when	such	UDG-	treated	aDNA	is	shot-
gun sequenced, the level of observed C→T transitions at CpG sites 
allows	inferring	the	relative	methylation	level	at	those	loci	(Pedersen	
et al., 2014).

Over the last decade, multiple studies have reported success-
ful retrieval of methylation patterns in past organisms using this 
approach	(reviewed	by	Orlando	et	al.,	2015).	Pedersen	et	al.	(2014)	
studied 20× coverage UDG- treated genomic data produced from a 
4000- year- old hair sample from Greenland. These authors reported 
significant correlations between genome- wide methylation levels 
inferred from this data with methylation measured in present- day 
human tissues, with the highest correlations found with hair. This 
study	also	found	expected	signals	of	hypomethylation	in	CpG	islands	
in the paleomethylome data and further inferred the age of the an-
cient individual using a methylation clock. The same year, studying 
the 52×- coverage Neanderthal and 30×- coverage Denisovan ge-
nomes	 derived	 from	 bone	 material,	 Gokhman	 et	 al.	 (2014)	 found	
overall	 low	CpG	methylation	 rates	 (<1.5%)	 as	 inferred	 from	 post-
mortem deamination; however, binning those methylation scores 
yielded high correlations with global methylation patterns measured 
in modern- day human bone samples. These authors further used 
this data to predict a number of loci, developmental genes, that 
might be differentially methylated between archaic hominins and 
modern	humans.	Hanghøj	et	al.	(2016)	published	the	epiPALEOMIX	
MethylMap	 algorithm	 for	 estimating	 methylation	 scores	 in	 UDG-	
treated	 ancient	DNA	 libraries	with	 sufficient	 (e.g.,	>2×)	 coverage.	
Applying	 their	 algorithm	 to	 published	 ancient	 human	 genomes,	
these authors showed tissue- based clustering among at least some 
paleomethylomes	they	analyzed.	Successful	retrieval	of	paleometh-
ylation signatures has also been reported for other species, including 
barley,	maize,	and	horses	(Liu	et	al.,	2023;	Smith	et	al.,	2014;	Wagner	
et al., 2020).

Despite the promising results described above, whether lifestyle- 
related paleomethylation signatures may be retrievable from ancient 
bone and tooth material remains unknown. It is also unclear whether 
paleomethylome profiles inferred from data produced in different 
laboratories and variable coverages could be readily comparable. 
This is a particularly challenging task because paleomethylome pro-
files are inferred indirectly, depending on the presence of random 
postmortem damage at read ends. The signal- to- noise ratio per locus 
is hence much lower compared to information collected using bisul-
fite sequencing on present- day tissue samples. Therefore the techni-
cal noise caused by different lab protocols could readily overshadow 
biological signals.

Here we address these questions by investigating methylation 
patterns across 34 published paleogenomes from hunter- gatherer 
(HG)	 and	 Neolithic	 farmer	 (NF)	 contexts	 from	 West	 and	 North	
Eurasia,	 produced	 by	 different	 laboratories	 and	 with	 a	 range	 of	
depth-	of-	coverages.	We	use	the	data	to	test	the	hypothesis	that	sys-
tematic methylation differences may be detected between ancient 
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HG	and	NF	groups,	driven	by	environmental	 changes.	We	 further	
ask	whether	convergent	HG-	NF	epigenetic	 shifts	can	be	detected	
between ancient and present- day populations.

2  |  METHODS

2.1  |  Genome data selection and preprocessing

We	selected	UDG/USER-	treated	shotgun-	sequenced	genomes	from	
published	genomic	data	including	13	HGs	and	21	NFs	from	West	and	
North	Eurasia.	Sample-	related	information	can	be	found	in	Table S1. 
We	note	that	the	Siberian	Bronze	Age	individuals	were	included	in	
the HG category since these groups had an HG- like lifestyle with 
a	diet	composed	mainly	of	marine	and	freshwater	products	 (Kılınç	
et al., 2021).	We	chose	to	limit	our	sample	to	West	and	North	Eurasia	
to limit the effect of differences in population genetic background 
but also tried to keep our sample large enough to increase power. 
We	used	the	R	(Wickham,	2016)	function	“ggmap”	for	plotting	the	
chosen	individuals'	geographical	distributions	(Figure 1a).

All	 data	 was	 downloaded	 as	 BAM	 or	 FASTQ	 files	 from	 the	
European	 Nucleotide	 Archive	 (ENA;	 https:// www. ebi. ac. uk/ ena),	
with reference numbers listed in Table S1.	All	FASTQ	and	BAM	files	
were remapped on Homo sapiens genome assembly hs37d5 using 
“bwa	aln”	with	parameters	“-	l	16500	-	n	0.01	-	o	2”	(Li	&	Durbin,	2009).	
We	filtered	out	reads	of	size	less	than	35 bps,	with	a	mapping	quality	
(MAPQ)	of	less	than	30,	and	with	more	than	10%	mismatches	to	the	
reference	genome.	We	verified	the	effectiveness	of	the	UDG/USER	
treatment	by	 studying	 the	PMD	profiles	 created	using	 “pmdtools”	
(Skoglund	et	al.,	2014)	on	each	genome	(Figures S1 and S2).

We	called	all	CG	dinucleotide	autosomal	positions	(n = 26,752,702)	
from	the	human	(hg19)	reference	genome	using	the	R	Bioconductor	
package	 “BSgenome.Hsapiens.UCSC.hg19”	 (Pagès,	 2019)	 and	
stored	these	in	a	BED	file.	We	then	filtered	these	by	removing	any	
positions	overlapping	with	SNP	positions	from	dbSNP	142	 (Sherry	
et al., 2001).	Our	aim	here	was	to	avoid	confounding	between	meth-
ylation signals and real variants at CpG positions. There remained 
13,270,411 autosomal CpG positions in the reference genome.

We	downloaded	CpG	 island	 (CGI)	 positions	 for	 hg19	 from	 the	
UCSC	Genome	Browser	(Karolchik	et	al.,	2004).	We	termed	2 kb	se-
quences	flanking	CpG	islands	“shores”	(upstream	regions	“shores5”	
and	 downstream	 regions	 “shores3”),	 2 kb	 sequences	 flanking	 the	
shores	“shelves”	 (upstream	regions	“shelves5”	and	downstream	re-
gions	“shelves3”),	and	distal	sites	outside	the	CpG	island	regions	as	
“open	sea,”	following	(Hanghøj	et	al.,	2016).

2.2  |  Methylation score calculation

We	chose	to	use	the	software	epiPALEOMIX	(Hanghøj	et	al.,	2016)	
over	 DamMet	 (Hanghøj	 et	 al.,	 2019);	 the	 latter	 is	 an	 alterna-
tive methylome mapping software developed by the same group 
but is described as requiring ≥20× coverage to generate reliable 

results.	 Since	 our	 dataset	median	was	much	 lower	we	 decided	 to	
use	epiPALEOMIX.	epiPALEOMIX	requires	UDG/USER-	treated	and	
≥2×-	coverage	genomes	(we	still	included	three	genomes	<2× to in-
crease	our	sample	size).	The	BAM	file,	the	hg19	reference	fasta	file,	
the	reference	BED	file	for	CpG	positions,	and	the	library	type	of	the	
sample	(single-	stranded/double-	stranded)	were	given	as	 input.	We	
thus	constructed	our	 sample	set	and	epiPALEOMIX	 input	 files	ac-
cording to these criteria.

We	 filtered	 the	epiPALEOMIX	output	 files	 for	 each	CpG	posi-
tion having ≥4 reads to increase the precision of the methylation 
score	(MS)	values.	This	filtering	resulted	in	an	average	of	3,006,714	
CpG	positions	per	genome	(10,642–11,721,229).	We	also	ran	parallel	
analyses using ≥10	reads	per	position	(Text	S1).

We	further	generated	a	file	that	included	the	information	related	
to	 the	 chromosome	 number,	 CpG	 position,	 and	 the	MS	 values	 of	
each ancient individual as a column by joining all the files by CpG 
positions.	Missing	values	were	presented	by	“NA.”

We	calculated	average	MS	values	per	CpG	position	per	individual	
from	the	epiPALEOMIX	outputs.	Let	n1i denote the number of deam-
inated reads and n0i denote the number of non- deaminated reads in 
genome i.	We	then	calculated:	M¯Si = n1i/(n0i + n1i).	We	also	plotted	
the	MS	values	per	individual	(Figure 1b)	using	“ggplot2”	function	in	R	
Wickham	(2016).	We	used	the	R	(Wickham,	2016)	functions	“ggmap”	
and	“ggplot”	for	plotting	geographical	distributions	and	the	CpG	dis-
tributions	(Figure 1c).

We	 performed	 gene	 annotation	 using	 the	 UCSC	 Genome	
Browser	table	for	the	hg19	assembly	containing	only	exons	(Karolchik	
et al., 2004).	After	that,	we	calculated	MS	at	the	promoter	sites	(4 kb	
long)	by	using	2 kb	upstream	of	the	first	exon	on	the	positive	strand.

We	also	ran	epiPALEOMIX	on	the	X	chromosomes	(chrX)	of	the	
same	34	individuals.	These	chrX	datasets	were	prepared	employing	
the same steps used with the autosomal datasets.

2.3  |  Monte Carlo normalization

Given	the	large	differences	in	mean	MS	values	among	the	genomes	
(Figure 1),	 we	 normalized	 our	 ANOVA	 dataset,	 which	 includes	 all	
the reads corresponding to CpG positions per individual, by random 
subsampling the reads so that every individual in the dataset has 
mean	MS	value	M¯S = 0.02.	Note	that	here	we	again	only	use	CpG	
positions with ≥4	reads	in	each	genome.	We	chose	0.02	as	a	target	
as this was on the lower end of the M¯S distribution among the ge-
nomes used.

Let n1i denote the number of originally deaminated reads in ge-
nome i, and let n0i denote the number of originally nondeaminated 
reads	in	the	same	genome.	We	proceeded	as	follows:	(a)	If	genome	i 
had	original	mean	MS < 0.02:	we	subsampled	from	n0i a random sub-
set n0is as n0is = 49n1i, so that n1i/(n0is + n1i) = 0.02.	(b)	If	genome	i had 
original	mean	MS > 0.02:	we	subsampled	from	n1i a random subset 
n1is as n1is = n0i/49,	so	that	n1is/(n0i + n1is) = 0.02.

We	ran	random	subsampling	using	the	function	“sample”	offered	
by R.
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We	repeated	 the	 random	subsampling	20	times	 independently	
to	produce	20	normalized	datasets.	The	chrX	dataset	was	also	nor-
malized	in	the	same	manner,	separately.	We	note	that	normalization	
is	performed	using	all	reads	(on	autosomes,	or	chrX),	not	just	ones	
that	overlap	genes.	We	also	normalized	 the	chrX	dataset	over	 the	
autosomal	MSs	and	plotted	violin	plots	for	all	CpGs	and	also	for	the	
Neolithic	individuals	reported	by	Marchi	et	al.,	2022 using the func-
tion	“vioplot”	in	base	R	(Figure 4).

2.4  |  Gene methylation datasets

We	used	these	20	normalized	datasets	to	compile	methylation	levels	
per gene, in two ways:

a.	 Full	data	for	 linear	mixed	models:	Here,	we	used	all	normalized	
MS	values	for	all	CpGs	overlapping	a	gene.	Each	individual	may	
be	represented	by	multiple	CpG	positions	per	gene	(median	261).	

F I G U R E  1 The	demographic	
characteristics of the 34 ancient genomes 
used in this study and their genome- wide 
methylation	scores.	(a)	The	excavation	
locations of ancient individuals are 
included in this study. Color coding 
indicates	subsistence	type.	(b)	Left	panel:	
Violin	plots	of	the	methylation	score	
(MS)	data	related	to	ancient	individuals	
included in this study. The brown and 
blue points indicate the mean and the 
median, respectively. The x-	axis	shows	
the	log2-	transformed	MS	values.	The	
y-	axis	represents	the	ancient	individuals.	
Right	panel:	Zoomed-	in	version	of	the	left	
panel.	(c)	The	distribution	of	mean	MS	per	
individual on CpG islands and genomic 
sites representing shelves, shores, and 
open seas.
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We	had	20	parallel	subsampled	datasets	of	gene	MS	values.	Note	
that the numbers of genes and CpG positions in each of these 
20 datasets were slightly different because of random sampling 
of	reads	(e.g.,	genes	with	one	CpG	position	might	not	be	repre-
sented	in	some	datasets).

b. Gene- averaged data: This single dataset was produced by calcu-
lating,	per	gene,	the	means	of	all	CpG	MS	values	and	averaging	
these	across	the	20	subsampled	datasets.	We	thus	summarized	
the	dataset	into	a	matrix	of	9956	genes × 34	genomes.

2.5  |  Statistical tests

We	used	tests	from	the	R	“stats”	package.	All	the	tests	were	carried	
out	two-	sided	unless	otherwise	indicated.	We	adjusted	p- values for 
multiple testing using the Benjamini–Hochberg procedure using the 
R	“p.adjust”	function.

2.6  |  Linear mixed effects models

We	applied	linear	mixed	effects	models	to	the	full	data	(a)	described	
above, where multiple CpG positions per gene represent an individual. 
Since	we	had	fixed	(subsistence	type,	tissue,	and	genetic	sex)	and	ran-
dom	factors	(individual	or	laboratory-	of-	origin)	in	the	settings,	we	de-
cided	to	conduct	linear	mixed-	effects	models	employing	the	R	“stats”	
package	“aov”	function	(R	Core	Team,	2020).	We	tested	two	models	
that differed in their random factors for each gene:

Model	 1:	 deamination∼subsistence	 type + tissue	 type + genetic	
sex + Error(individual)

Model	 2:	 deamination∼subsistence	 type + tissue	 type + genetic	
sex + Error(laboratory-	of-	origin)

Here,	 the	 response	 variable	 “deamination”	 is	 a	 binary	 [0,1]	
variable that describes how many reads falling into each gene are 
deaminated or not. Note that this approach suffers from pseudorep-
lication	because	 the	observations	 (reads)	per	 locus	are	dependent	
when multiple reads map to the same locus. To overcome this, we 
also	used	the	gene-	averaged	data	(b)	described	above.	This	time	we	
applied	ANOVA	and	Kruskal–Wallis	tests	on	MS	values	per	gene	but	
without	an	individual	component,	using	the	R	“stats”	package	“aov”	
and	“kruskal.test”	functions,	respectively	(R	Core	Team,	2020).	Here,	
we have a single observation per gene, and thus the results do not 
suffer from pseudoreplication.

2.7  |  Multidimensional scaling analysis

We	 carried	 out	 multidimensional	 scaling	 (MDS)	 analysis	 on	 our	
gene-	averaged	dataset	which	 included	mean	MSs	per	gene	aver-
aged	20	subsampled	datasets.	We	used	the	R's	 “cmdscale”	 func-
tion.	We	 ran	MDS	 both	 including	 all	 34	 individuals,	 or	 using	 32	
individuals	 after	 excluding	 extreme	 outliers	 Motala12	 and	 K14	
(Figure 3, Figure S8).

2.8  |  Gene Ontology enrichment

Gene	 Ontology	 (GO)	 (Consortium,	 2008)	 enrichment	 analysis	
(Subramanian	et	al.,	2005)	was	performed	by	comparing	gene	sets	
with	 evidence	 for	 significant	 effects	 (for	 subsistence	 type,	 tissue	
type,	 or	 genetic	 sex)	 that	 had	 BH-	adjusted	 p-	values < 0.05	 from	
the	 linear	mixed-	effects	models.	We	used	the	R	“topGO”	(Alexa	&	
Rahnenfuhrer, 2019)	and	“org.Hs.eg.db”	packages	(Carlson,	2019)	to	
collect	GO	Biological	Process	information	for	the	genes.	The	back-
ground	gene	sets	included	all	9657–9660	genes	across	the	20	nor-
malized	datasets	included	in	the	analyses.	We	ran	the	Fisher's	exact	
test	within	“topGO,”	and	used	 its	 “elim”	algorithm	for	 transversing	
the	GO	hierarchy	(removing	genes	from	significantly	enriched	lower	
nodes)	 (Alexa	&	Rahnenfuhrer,	 2019).	We	 also	 filtered	 the	 output	
to have ≥5	genes	per	GO	term	by	using	the	“nodeSize”	option	while	
creating the GO data. The p- value threshold for the significance of 
the	GO	terms	was	chosen	to	be	0.01.	We	also	visualized	resulting	
GO	terms	using	reviGO	with	default	parameters	(Supek	et	al.,	2011).	
Results	for	two	randomly	chosen	datasets	(of	20	datasets)	are	shown	
in Figures S6 and S7.

2.9  |  Subsistence type- related methylation 
differences in ancient Eurasian versus modern 
African datasets

A	recently	published	study	uses	blood	samples	 taken	from	 individu-
als	to	compare	modern-	day	HG	(MHG)	and	modern-	day	farmer	(MF)	
blood	methylation	profiles	in	West	and	East	African	rainforests	(Fagny	
et al., 2015).	We	used	the	results	file	of	the	study	which	contained	the	
multiple- testing corrected p- values and the logarithm of methylation 
fold-	change	between	MFs	versus	MHGs	(logFC).	In	total,	the	dataset	
contained	365,401	CpG	positions	overlapping	19,672	genes.	We	used	
this information to estimate correlations between our results and the 
modern results reported by the original study.

We	 tested	 the	 co-	directionality	 between	 the	 logFC	 values	 in	
this	dataset	and	NF-	HG	differences	we	calculated	in	our	methylome	
dataset. In other words, we compared farmer versus HG differences 
in	 MS	 scores	 δMSF−HG across overlapping genes between pairs of 
datasets.	Given	the	variability	of	MS	profiles	among	genomes	from	
different laboratories, we performed this comparison using sub- 
datasets	 from	three	different	 laboratories	 that	contained	both	NF	
and	HG	individuals	(Boston,	Stanford,	Mainz;	see	Table S1),	and	also	
using	12	HG	and	20	NF	genomes	excluding	Motala12	and	K14	 in-
dividuals.	We	calculated	 the	Spearman's	 rank	correlation	between	
δMSF−HG values from two datasets across common genes using the R 
“stats”	package	function	“cor.test”	(R	Core	Team,	2020).	We	plotted	
the lowest regression lines for the main laboratory of origins using 
the	R	 “graphics”	package	 “pairs”	 function	with	 the	 “panel.cor”	 and	
“panel.smooth”	parameters	(Figure 4).	The	correlations	and	p- values 
were	calculated	using	Spearman's	rank	correlation	method.	For	plot-
ting	we	used	the	R	“graphics”	package	and	“ggplot2”	package	func-
tions	(Wickham,	2016).
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3  |  RESULTS

Our	dataset	comprises	published	paleogenomes	of	13	HGs	(45–4 kya)	
and	 of	 21	 NFs	 (8.5–5 kya)	 from	 Eurasia	 as	 of	 2022,	 all	 shotgun-	
sequenced	 and	 UDG-	treated,	 and	 originating	 from	 six	 different	
laboratories	 and	 eight	 different	 publications	 (Antonio	 et	 al.,	 2019; 
Fu	 et	 al.,	 2014; Günther et al., 2018;	 Kılınç	 et	 al.,	 2021; Lazaridis 
et al., 2014;	Marchi	et	al.,	2022;	Sánchez-	Quinto	et	al.,	2019;	Seguin-	
Orlando et al., 2014)	 (Table S1; Figures S1 and S2).	This	 includes	all	
genomes	from	Eurasia	as	of	2022	that	were	UDG-	treated,	shotgun-	
sequenced,	and	with	sufficient	(minimum	c.1×)	coverage.	We	limited	
our	 sample	 to	West	 and	 North	 Eurasia	 (Figure 1a)	 to	 limit	 genetic	
background	variation	(Section	2).	Of	the	34	genomes,	23	were	derived	
from bone and 11 from tooth; 12 were female and 22 male; four were 
produced using single- stranded and the rest double- stranded library 
protocols. The genome coverages ranged from c.1×	 to	 58×	 (me-
dian = 9×).	Genomes	from	different	publications	had	different	cover-
age	levels	(ANOVA	p = 3E-	14),	but	the	coverages	of	subsistence	type	
groups	(HG	vs.	NF)	were	not	different	in	this	sample	(ANOVA	p = 0.69).

To	 measure	 methylation	 rates,	 we	 used	 c.13 million	 autosomal	
CpG	 positions	 in	 the	 reference	 genome	 excluding	 variable	 positions	
(Section	2).	In	this	set,	an	average	of	c.9 million	(3–12 million)	CpG's	were	
covered	by	at	least	one	read	per	genome.	Filtering	for	a	minimum	depth	of	
4	left	us	with	an	average	of	c.3 million	(10,000–12 million)	CpG	positions	
per	genome.	Running	epiPALEOMIX	(Hanghøj	et	al.,	2016)	on	this	data,	
we	computed	the	number	of	likely	methylated	(deaminated)	and	possibly	
non-	methylated	(non-	deaminated)	reads,	and	the	resulting	methylation	
score	 (MS)	for	each	CpG	position	per	genome.	The	distribution	of	the	
MS	values	per	CpG	site	across	all	34	genomes	revealed	average	methyl-
ation rates of <7%	(Figure 1b).	This	is	much	lower	than	the	average	CpG	
methylation	rates	in	human	tissues	(60%–80%)	(Anastasiadi	et	al.,	2018; 
Smith	 &	 Meissner,	 2013),	 but	 in	 line	 with	 published	 estimates	 from	
other	paleogenomes	(Gokhman	et	al.,	2014; Hanghøj et al., 2016),	and	
is caused by the indirect nature of methylation level measurements in 
ancient	DNA.	We	also	observed	multiple-	fold	differences	 in	mean	MS	
among	the	34	paleogenomes	(c.1%	vs.	c.6%),	which	likely	reflects	techni-
cal	effects	rather	than	biological	signals	(Tables S1 and S2).

Despite these possibly technical effects, we found that CpG is-
lands	 (CGIs),	which	are	normally	hypomethylated	 regions	of	 the	ge-
nome,	show	significantly	lower	MS	scores	(Wilcoxon	signed	rank	test	
p < 1e-	10;	Table S3)	across	these	34	paleogenomes,	compared	to	CGI	
shores	(2 kb	from	CGI)	and	CGI	shelves	(4 kb	from	CGI)	and	more	dis-
tant	 “open	 sea”	 areas	 (Figure 1c; Figures S3 and S4).	This	 indicates	
that	the	genome-	wide	MS	values	measured	here	have	some	degree	of	
biological relevance.

3.1  |  Tests for subsistence type, tissue, and sex 
effects: few or no genes with evidence for systematic 
methylation differences

We	next	tested	for	differentially	methylated	genes	(DMGs)	related	
to	 subsistence	 type,	 tissue	 of	 origin	 (tooth	 or	 bone),	 and	 genetic	

sex.	 Before	 running	 the	 tests,	 to	 avoid	 possible	 biological	 effects	
being	confounded	by	inter-	genome	variability	in	average	MS	values	
(Figure 1b),	 we	 normalized	 the	 dataset	 by	 randomly	 subsampling	
reads for every individual genome so that each genome gained a 
genome-	wide	mean	MS	of	0.02	(Section	2).	We	performed	this	sub-
sampling 20 times, creating 20 normalized replicate datasets. Using 
each of these replicates separately, and for each gene, we ran linear 
mixed	effects	models:	all	MS	values	across	a	gene	as	the	response,	
subsistence	type,	tissue,	and	sex	as	fixed	effects,	and	“individual”	as	
the random effect.

We	 thus	 tested	 c.9600	 (9657–9660)	 genes	 across	 the	 20	 nor-
malized	datasets,	with	each	gene	 represented	by	a	median	of	261	
CpG	 positions	 (1–18,097).	 Among	 these	 genes,	 a	 total	 of	 55–71	
(0.5%–0.7%	of	 tested	genes)	had	ANOVA	p < 0.05	 for	only	 subsis-
tence	 type	after	Benjamini–Hochberg	 (BH)	correction	 for	multiple	
testing	 (the	 range	 representing	 the	 result	 across	 the	 20	 replicate	
datasets).	The	number	of	BH-	corrected	significant	genes	for	tissue	
type	and	genetic	sex	were	19–39	(0.2%–0.4%)	and	0–12	(0%–0.1%),	
respectively	 (Figure S5).	 Figure 2a shows the top genes identified 
for	each	factor.	We	note	that	this	approach	may	be	overestimating	
effects due to some degree of pseudoreplication, which we address 
below	(Section	2).

We	 performed	 functional	 enrichment	 analysis	 using	 gene	 on-
tology	(GO)	Biological	Process	categories	to	identify	possible	func-
tional	roles	of	DMGs	(those	passing	BH-	corrected	ANOVA	p < 0.05)	
relative	 to	 the	background	set	of	9657–9660	genes	across	 the	20	
subsampled datasets. The most enriched GO terms included devel-
opment-		 and	 regulation-	related	 mechanisms	 (results	 for	 two	 ran-
domly chosen datasets are shown in Figures S6 and S7).	However,	
the	results	were	not	significant	after	multiple	testing	correction	(BH-	
corrected	Fisher's	exact	test	p > 0.05).

We	 next	 repeated	 the	 previous	 analysis	 but	 this	 time	 using	
the	 “laboratory-	of-	origin”	 as	 a	 random	 effect	 (instead	 of	 “individ-
ual”).	The	numbers	of	genes	with	sufficient	information	to	execute	
ANOVA	 to	 compute	 p-	values	 for	 all	 categories	 were	 8867–8891	
across	the	20	subsampled	datasets	(Section	2).	This	time,	either	no	
gene	or	a	maximum	of	two	genes	were	significant	at	BH-	corrected	
p < 0.05	for	any	of	the	three	fixed	factors.	The	top	genes	are	shown	
in Figure 2b; similar to those in Figure 2a no strong effects are visible 
even among these genes.

Instead	of	using	the	full	data,	summarizing	MS	values	per	gene	
might	 reduce	 noise	 and	 clarify	 the	 signal.	 For	 each	 of	 the	 9955	
genes	and	all	34	individuals,	we	calculated	the	average	MS	across	
all CpG positions covered with a minimum of 4 reads per gene and 
averaged	these	across	all	20	subsampled	datasets	(Section	2).	Per	
individual	 genome,	we	observed	 a	median	 of	 9685	 genes	 (mean	
7859)	with	 a	minimum	1	CpG	position	 covered.	Using	 this	 data-
set,	we	 first	 calculated	 Euclidean	 distances	 in	 genome-	wide	MS	
scores between all pairs of individuals and summarized these using 
multi-	dimensional	 scaling	 (MDS).	This	 revealed	 that	 the	K14	and	
Motala12	genomes,	which	 also	had	 the	 lowest	 coverage	of	CpG	
sites in our set, also behaved as outliers in their paleomethylome 
profiles	(Figure S6).
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    |  7 of 11ÇOKOĞLU et al.

Removing	these	two	genomes,	an	MDS	plot	of	distances	among	
the remaining 32 genomes revealed salient clustering by laboratory- 
of-	origin	(Figure 3).

We	 further	 limited	 the	 dataset	 to	 9273	 genes	 observed	
in	 a	 minimum	 of	 20	 individuals,	 and	 ran	 Kruskal–Wallis	 with	

laboratory-	of-	origin	 as	 an	 explanatory	 factor,	 excluding	Motala12	
and	K14	individuals:	we	found	an	effect	across	14%	of	genes	tested	
(BH-	corrected	 p < 0.05).	 In	 contrast,	 running	 the	 same	 test	 using	
subsistence	type,	tissue,	or	sex	as	explanatory	factors	yielded	no	sig-
nificant	genes	at	this	cutoff.	Performing	this	analysis	by	limiting	the	

F I G U R E  2 Representative	genes	with	the	most	significant	differential	methylation	signals	in	linear	mixed	model	analyses,	related	to	
subsistence	type,	tissue,	and	sex.	The	x-	axis	represents	the	factors	while	the	y-	axis	represents	the	mean	MS	values	per	gene	per	individual.	
(a)	Genes	chosen	using	models	with	“individual”	as	random	factor.	Left	panel:	ICAM5	(subsistence	type	p < 0.01).	Middle	panel:	ATPB1	(tissue	
type p < 0.01).	Right	panel:	CEP135	(genetic	sex	p = 0.02).	(b)	Genes	chosen	using	models	with	“laboratory-	of-	origin”	as	random	factor.	Left	
panel: TOX2	(subsistence	type	p = 0.006).	Middle	panel:	PCDHA2	(tissue	type	p = 0.03).	Right	panel:	RCOR1	(genetic	sex	p = 0.04).

(a)

(b)

F I G U R E  3 Multi-	dimensional	scaling	(MDS)	plots	of	32	paleomethylome	profiles.	The	data	were	created	by	Monte	Carlo	normalizing	MS	
values	20	times	followed	by	averaging	per	gene.	(a)	MDS	plot	labeled	by	subsistence	type	of	individuals.	Blue:	HG,	Red:	NF.	(b)	MDS	plot	
labeled	by	the	laboratory-	of-	origin	(indicated	by	the	city).	The	Motala12	and	K14	genomes	were	not	included	in	the	analyses	due	to	their	
outlier	profiles	compared	to	the	rest	likely	representing	technical	effects	(Figure S8),	which	leaves	us	with	five	laboratories.

(a) (b)
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8 of 11  |     ÇOKOĞLU et al.

dataset to a minimum of 25 or 30 individuals, using only genomes 
with ≥10×	 coverage,	 or	 using	 ANOVA	 produced	 qualitatively	 the	
same outcomes.

In addition, we repeated the analysis using a cutoff of ≥10 
reads per CpG position and 20 genomes with sufficient coverage. 
We	again	found	similar	results,	with	44,	37,	and	3	genes	with	BH-	
corrected p < 0.05	for	subsistence	type,	tissue	type,	and	genetic	sex,	
respectively,	and	no	significant	functional	enrichment	(Text	S1).	Our	
results overall suggest that the biological signals are limited, possibly 
obscured by the dominant laboratory- of- origin effect in the data.

3.2  |  No significant correlation with 
subsistence- type effects in modern- day Africa

Although	 our	 analyses	 above	 did	 not	 yield	 any	 clear	 signs	 of	
subsistence- related differential methylation, weak but authen-
tic	 signals	might	 still	 be	detected	by	 comparing	our	MS	data	with	
subsistence-	related	 DMGs	 identified	 in	 modern-	day	 populations	
(Fagny	et	al.,	2015),	assuming	Neolithic	shifts	would	create	conver-
gent	methylation	signatures.	We	decided	to	run	this	comparison	(a)	
on	our	full	dataset	of	HG-	NF	differences,	and	(b)	separately	on	three	
paleomethylome datasets from different laboratories where both 

subsistence	 types	were	 represented	 (Table 1);	we	considered	 that	
the latter approach might help remove confounding between real 
signals and technical effects.

To this end, we utilized methylation differences documented 
between	 modern-	day	 HGs	 and	 agriculturalists	 in	 Central	 Africa,	
measured in whole blood samples using bisulfite treatment and the 
Illumina	450K	array	 (Fagny	et	al.,	2015).	The	authors	of	 this	study	
reported	c.9000	and	c.6000	genes	 that	 included	CpG	sites	differ-
entially methylated between independent groups of traditional HGs 
and	agriculturalists	living	in	Eastern	Central	Africa	(EC	Africa)	or	in	
Western	Central	Africa	(WC	Africa),	respectively.

We	found	7890	genes	overlapping	between	our	paleomethylome	
dataset	 and	 the	modern-	day	African	 dataset.	 Across	 these	 genes,	
we calculated the correlation between methylation differences be-
tween	HG-	NF	groups	in	our	dataset,	and	the	log-	transformed	mean	
fold	change	[log(FC)]	values	between	modern-	day	HGs	and	agricul-
turalists	groups	 in	 the	EC	Africa	and	WC	Africa	datasets	as	calcu-
lated	by	Fagny	et	al.	 (2015)	 (Section	2).	We	observed	a	significant	
positive	correlation	(Spearman's	rank	correlation	coefficient	r = 0.34,	
p < 0.01;	Table 1)	 between	methylation	differences	 in	modern-	day	
HGs	and	agriculturalists	measured	in	EC	Africa	and	WC	Africa,	in	line	
with	the	original	publication	(Fagny	et	al.,	2015).	However,	no	con-
sistent	correlation	could	be	observed	between	HG-	NF	differences	

p- Value, r ECAfrica WCAfrica Boston Stanford Mainz

ECAfrica – r = 0.35 r = −0.043 r = −0.035 r = −0.044

WCAfrica p < 0.01 – r = −0.028 r = −0.027 r = −0.043

Boston p < 0.05 p = 0.26 – r = 0.019 r = 0.034

Stanford p = 0.31 p = 0.99 p = 0.20 – r = −0.043

Mainz p = 0.084 p < 0.05 p = 0.17 p < 0.01 –

Note:	The	upper	triangle	panel	reports	Spearman	rank	correlation	coefficient	r, whereas the lower 
triangle shows p-	values.	“ECAfrica”	and	“WCAfrica”	represent	present-	day	HG-	agriculturalist	
methylation	differences	(log	fold-	change)	measured	in	humans	from	East	Central	Africa	and	West	
Central	Africa,	respectively.	“Boston,”	“Stanford,”	and	“Mainz”	stand	for	MS	differences	between	
HG-	NF	groups	measured	using	only	paleogenomes	produced	in	the	respective	city	(Table S1).

TA B L E  1 Pairwise	comparisons	of	
HG-	agriculturalist	DNA	methylation	
differences between ancient and present- 
day human datasets.

F I G U R E  4 Violin	plots	of	X	chromosome	methylation	estimates	in	female	and	male	ancient	genomes.	The	y-	axes	show	chrX	MS	values	
divided	by	the	mean	autosomal	MS	for	the	same	individual.	Left	Panel:	ChrX	MS	values	of	all	34	paleogenomes	for	12	females	(XX)	and	22	
males	(XY).	The	MS	values	for	females	and	males	were	pooled	after	normalizing	by	dividing	the	chrX	MS	values	by	the	mean	autosomal	MS	
value	for	the	same	individual.	Right	Panel:	ChrX	MS	values	from	NF	individuals	from	Marchi	et	al.	(2022).	These	genomes	were	chosen	to	
remove	the	possible	influence	of	other	factors	(different	laboratory	and	subsistence	type	effects)	on	chrX	methylation	estimates.
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    |  9 of 11ÇOKOĞLU et al.

within our paleomethylome dataset or between differences in the 
paleogenomes and HG- agriculturalist differences measured either 
in	EC	Africa	or	in	WC	Africa.	Two	nominally	significant	correlations	
were	negative	and	all	correlations	were	weak	(Spearman's	r < 0.05)	
across	the	2507	genes	shared	across	all	datasets	(Table 1).

3.3  |  Lack of sex- related X chromosome 
methylation signatures among the 34 paleogenomes

The	X	chromosome	(chrX)	is	expected	to	be	methylated	at	higher	rates	
in	females	compared	to	males	due	to	female	X	chromosome	inactiva-
tion	(Liu	et	al.,	2010).	Indeed,	Liu	et	al.	(2023)	recently	reported	clear	
clustering	of	X	 chromosome	MS	values	measured	 in	 ancient	 female	
and male horses. To investigate such signal among the 34 paleog-
enomes	used	in	this	study,	we	prepared	a	chrX	paleomethylome	data-
set,	normalizing	the	chrX	MS	scores	by	the	mean	autosomal	MS	score	
for	that	individual.	We	then	tested	each	chrX	gene	for	sex	differences	
using	ANOVA,	using	either	“laboratory-	of-	origin”	or	“individual”	as	ran-
dom	factors.	Unexpectedly,	no	chrX	gene	was	significant	for	sex	after	
the	BH	correction	(p > 0.05).	A	plot	of	chrX	MS	distributions	between	
female and male individuals across all 34 paleogenomes, or only using 
13	NF	paleogenomes	from	Mainz,	likewise	revealed	no	obvious	differ-
ence	between	sexes	(Figure 4).	This	suggests	that	the	overall	biological	
signal in the dataset is indeed limited.

4 | DISCUSSION

Today, thousands of human paleogenomes are being produced 
every year and there is growing interest in using these to study bio-
logical	 processes	 beyond	 historical	 and	 social	 questions	 (Orlando	
et al., 2015).	This	includes	the	study	of	DNA	methylation	levels.	Even	
though	cytosine	methylation	appears	to	survive	in	aDNA	(Gokhman	
et al., 2014;	Pedersen	et	al.,	2014;	Seguin-	Orlando	et	al.,	2015),	it	has	
been yet unclear whether the highly variable nature of the published 
paleogenomic data could allow reproducible signals to be inferred 
from joint datasets from different laboratories.

Here we investigated biological signals related to tissue source, 
sex,	and	subsistence	type	in	a	heterogeneous	paleomethylome	data-
set	comprising	genomes	from	six	different	laboratories.	We	limited	
the calls to CpG sites with a minimum of 4 reads, normalized the data 
by subsampling to account for average coverage differences, and ran 
analyses using several different comparative approaches. Beyond 
hypomethylation of CGIs, we could not recover any biological signal 
that reached genome- wide statistical significance.

Whether	 universal	 subsistence-	type	 effects	 related	 to	 hunter-	
gatherer versus agriculturalist lifeways might be prevalent in bone 
methylomes is an open hypothesis. Hence, not finding a consistent 
signal in this dataset may not be surprising and attributable to a di-
versity of possible effects, including the lack of a real convergent 
signal,	or	small	 sample	sizes.	However,	 the	 lack	of	 tissue	 (bone	vs.	
tooth)	or	sex	signatures,	including	on	chrX,	was	unexpected.

Our negative results appear to contrast with the recent report 
by	Liu	et	al.	(2023)	who	identified	systematic	methylation	signatures	
of	 sex,	 age,	 and	castration	 in	paleogenomes,	or	 those	by	Hanghøj	
et	al.	(2016)	who	clustered	genomes	based	on	tissue	type.	However,	
the first study used >5× coverage genomes produced in the same 
laboratory, and the second study used data from two laboratories 
and only >14× genomes. Our results also contrast with another re-
cent study that reported significant methylation differences among 
ancient	human	populations	using	1240K	capture	data	and	pooling	
across	 samples	 (Barouch	 et	 al.,	 2024);	 however,	 it	 remains	 possi-
ble that batch effects might also have contributed to the detected 
differences.

In our heterogeneous dataset, the most prominent clustering 
was	by	 laboratory-	of-	origin.	Such	technical	effects	on	methylation	
scores could be due to differences in mean depth- of- coverage, as 
well as variable coverage patterns across paleogenomes, which, in 
turn,	 could	 be	 driven	 by	 laboratory	 protocol	 differences	 in	 aDNA	
isolation,	 library	 preparation,	 or	 sequencing.	We	 hypothesize	 that	
such technical variability overshadows any differential methylation 
signals that are subtle and measured indirectly. Hence, based on our 
results, strict control of technical effects and the wider production 
of	 relatively	 high	 coverage	 (e.g.,	>10×)	 UDG-	treated	 shotgun	 ge-
nomes	 (Niiranen	et	al.,	2022)	would	be	highly	 favorable	for	 future	
paleomethylome	studies.	Meanwhile,	using	alternative	experimen-
tal	 strategies	 could	 also	 be	 an	 option	 for	 paleomethylomics.	 For	
instance,	Sawyer	et	al.	(2023)	recently	reported	that	bisulfite	treat-
ment	 of	 aDNA	 coupled	with	 a	 single-	stranded	 library	 preparation	
protocol could produce similar or even more accurate CpG methyla-
tion estimates as that inferred indirectly from postmortem damage, 
using much lower amounts of sequencing data.

Such	 exploration	 is	 highly	 welcome,	 as	 high-	resolution	 pa-
leomethylome information from bone and tooth tissue can have 
diverse applications. These range from estimating methylation age, 
physiological/metabolic stress levels, or pathogenic responses, 
and	 could	 be	 applied	 to	 evolutionary	 studies	 of	 humans	 (Zhur	
et al., 2021),	domestic	species	(MacHugh	et	al.,	2016),	or	wild	pop-
ulations. This information, in turn, could help reconstruct past en-
vironments and also resolve long- standing questions on the role of 
epigenetic responses in adaptation to new environments.
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